F325: Equilibria, Energetics and Elements 5.1.3 Acids, Bases & Buffers

1.	(i)	H ⁺ /prote	on donor (1)	1	
	(ii)	partially	v dissociates/ionises (1)	1	[2]
2.		5OH(aq) + cid 1	$- OH^{-}(aq) \rightleftharpoons C_{6}H_{5}O^{-}(aq) + H_{2}O(l)$ base 2 base 1 acid 2 (1)		[1]
3.	(i) (ii)	$M_{\rm r} C_6 H_5 O$ $[C_6 H_5 O]$ 1.3×10 $[H^+] = \gamma$	$_{5}H_{5}O^{-}(aq)] [H^{+}(aq)] / [C_{6}H_{5}OH(aq)] (1)$ $_{5}OH = 94 (1)$ $H(aq)] 4.7/94 = 0.050 \text{ mol } dm^{-3} (1)$ $p^{-10} \approx [H^{+}(aq)]^{2} / 0.050 \text{ mol } dm^{-3} (1) (`=` sign is acceptable)$ $\sqrt{\{(1.3 \times 10^{-10}) \times (0.050)\}} = 2.55 \times 10^{-6} \text{ mol } dm^{-3} (1)$ $\log[H^{+}] = -\log 2.55 \times 10^{-6} = 5.59 (1)$	1	
		1	: [H ⁺]; pH expression ; calc of pH from [H ⁺]	5	[6]
4.	[C ₆ H	$I_5O^-(aq)]$	$9 \times 10^{-9} \text{ mol dm}^{-3}$ (1) = $K_a [C_6H_5OH(aq)] / [H^+(aq)](1)$ = 0.13 mol dm ⁻³ (1) Calculation should use half the original concentration of phenol to find the concentration of sodium phenoxide in the buffer. This should then be doubled back up again.		
			Do not penalise an approach that uses the original concentration of phenol in the expression above.		[3]
5.	(a)		onic product (1) $f_w = [H^+(aq)] [OH^-(aq)]$ (1) state symbols not needed	1 1	

(a)
$$Ca_3(PO_4)_2 + 2H_2SO_4 \rightarrow Ca(H_2PO_4)_2 + 2CaSO_4$$
 (1)
(b) $H_2PO_4^-(aq) \rightleftharpoons H^+(aq) + HPO_4^{2-}(aq) / H_2PO_4^-(aq) \rightleftharpoons 2H^+(aq) + PO_4^{3-}(aq)$ (1)
(or equivalent with H_2O forming H_3O^+)

pH =
$$-\log (1.85 \times 10^{-12}) = 11.73/11.7$$
 (1)
ecf is possible for pH mark providing that the [H⁺]
value has been derived from $K_w/[OH^-]$
If pOH method is used, pOH = 2.27. would get 1st mark,
pH = 14 - 2.27 = 11.73 gets 2nd mark.
Commonest mistake will be to not double OH⁻⁻ and to use 2.7×10^{-3}
This gives ecf answer of 11.43/11.4, worth 2 marks.
pH = 11.13 from dividing by 2: worth 2 marks

$$[OH^{-}] = 2 \times 2.7 \times 10^{-3} = 5.4 \times 10^{-3} \text{ mol dm}^{-3} \text{ (1)}$$
$$[H^{+}(aq)] = \frac{K_{w}}{[OH^{-}(aq)]} = \frac{1.0 \times 10^{-14}}{5.4 \times 10^{-3}} = 1.85 \times 10^{-12} \text{ mol dm}^{-3} \text{ (1)}$$
$$pH = -\log(1.85 \times 10^{-12}) = 11.73/11.7 \text{ (1)}$$

concentration of Ca(OH)₂ = $40 \times 5.34 \times 10^{-5}$ $= 2.136 \times 10^{-3} \text{ mol dm}^{-3} \text{ (1)}$ 2 marks for $4.27 \times 10^{-3} / 8.54 \times 10^{-3} \text{ mol dm}^{-3}$ (no factor of 4)

moles of HCl = $\frac{5 \times 10^{-3} \times 21.35}{1000}$ = 1.067 × 10⁻⁴ mol (1)

(b)

(c)

(d)

8 (1)

moles of Ca(OH)₂ = $\frac{1.067 \times 10^4}{2}$ = 5.34 × 10⁻⁵ mol (1) 3

6. (

Plymstock School

2

[9]

1

1

1

3

(c)	(i)	$HPO_4^{2-}(1)$	1	
	(ii)	H ₃ PO ₄ (1)	1	
	(iii)	$H_2PO_4^-$ produced Ca(H_2PO_4) ₂ or on LHS of an attempted equilibrium equation (1) 2 equations/equilibria to shown action of buffer (1)(1) from: $H_2PO_4^- + H^+ \iff H_3PO_4 /$ $H_2PO_4^- \iff H^+ + HPO_4^{2-} /$ $H_2PO_4^- + OH^- \iff H_2O + HPO_4^{2-} /$ $H^+ + OH^- \iff H_2O$	3	
				[7]

7. proton donor \checkmark partially dissociates \checkmark

8.
$$K_{a} = \frac{[\text{HCOO}^{-}][\text{H}^{+}]}{[\text{HCOOH}]} / \frac{[\text{H}^{+}]^{2}}{[\text{HCOOH}]} / [\text{H}^{+}] = \sqrt{(Ka \times [\text{HA}])} / \frac{1.58 \times 10^{-4}}{0.025} / \checkmark$$
$$[\text{H}^{+}] = \sqrt{\{(1.58 \times 10^{-4}) \times (0.025)\}} = 1.99 \times 10^{-3} \text{ mol dm}^{-3} \checkmark$$
$$\text{pH} = -\log[\text{H}^{+}] = -\log 1.99 \times 10^{-3} = 2.70 \checkmark$$
$$5.4034 \text{ (no square root) with working would score 1 mark.}$$

- 9. (i) A solution that minimises pH changes/resists pH changes/opposes pH changes ✓
 (not pH is kept constant/pH maintained/pH cancelled out.
 - (ii) HCOONa/HCOO⁻/ NaOH ✓
 HCOO⁻ is the conjugate base/
 HCOONa is the salt of the weak acid or HCOOH/
 HCOONa supplies HCOO⁻ ✓

[2]

[3]

1

2

Ka /pKa /acid strength/amount of dissociation \checkmark

Two points from:

(iii)

temperature \checkmark (but **not** "temperature & pressure") ratio/amounts/concentrations of weak acid and **conjugate** base/**salt** \checkmark (or reverse ratio) (**not** concentration of base as it could imply NaOH)

2 max

[5]

10. Mass of HNO₃ =
$$\frac{1400 \times 65}{100}/910g\checkmark$$

Moles of HNO₃ = $\frac{910}{63} = 14.4\checkmark$
pH = $-\log[H^+] = -\log 14.4 = -1.16/1.2\checkmark$ calc -1.15836
pH from ignoring 65% pH = -1.35 : with working, 2 marks.

11.
$$\rightarrow$$
 $CO_2 + H_2O \checkmark$

Complete correct balanced equation for 2nd mark: $2HNO_3 + CaCO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O /$ $2H+ + CaCO_3 \rightarrow Ca^{2+} + CO_2 + H_2O /$ $2H^+ + CO^{2-}_3 \rightarrow CO_2 + H_2O \checkmark$

one pair: HNO₃ and NO₃⁻ \checkmark other pair: HCOOH and HCOOH₂⁺ \checkmark

Two species differing by $H^+ \dots AW \checkmark$

13. moles of NaOH = $\frac{0.1263 \times 23.75}{1000}$ / 3.00×10^{-3} mol \checkmark moles of acid = 3.00×10^{-3} mol \checkmark moles of acid in flask = $10 \times 3.00 \times 10^{-3} = 3.00 \times 10^{-2}$ mol \checkmark molar mass of compound = $\frac{\text{mass}}{n} = \frac{2.58}{3.00 \times 10^{-2}} = 86 \checkmark 4$

12.

[2]

[3]

[3]

A 4 carbon carboxylic acid (e.g. butanoic acid) shown (bod) 🗸 Any 2 possible isomers $\checkmark \checkmark$ from: $CH_2 = C(CH_3)COOH$ $CH_2 = CHCH_2COOH$ cis CH₃CH = CHCOOH trans CH₃CH = CHCOOH 4 Accept structural formulae that are unambiguous. partial dissociation: HCOOH \rightleftharpoons H⁺ + HCOO⁻(1) 14. (a) 1 $pH = -log (1.55 \times 10^{-3}) = 2.81/2.8$ (1) (i) (b) [H⁺] deals with negative indices over a very wide range/ pH makes numbers manageable /removes very small numbers (1) 2 (ii) $K_a = \frac{[H^+(aq)][HCOO^-(aq)]}{[HCOOH(aq)]}$ (1) (state symbols not needed) 1 (iii) $K_{\rm a} = \frac{[{\rm H}^+({\rm aq})]^2}{[{\rm HCOOH}({\rm aq})]} = \frac{(1.55 \times 10^{-3})^2}{0.015}$ (1) $= 1.60 \times 10^{-4} \text{ (mol dm}^{-3})(1)$ $pK_a = -\log K_a = -\log (1.60 \times 10^{-4}) = 3.80$ (1) 3 (iv) Percentage dissociating = $\frac{(1.55 \times 10^{-3}) \times 100}{0.015}$ = 10.3 % / 10% (1) 1 (working not required) 15. $HCOOH + NaOH \rightarrow HCOONa + H_2O$ (1) 1 (i)

state symbols not needed

Molecular formula = $C_4H_6O_2$ \checkmark

[8]

[8]

	(ii)	n(HCOOH) = $0.0150 \times 25.00/1000 = 3.75 \times 10^{-4}$ (1) volume of NaOH(aq) that reacts is 30 cm ³ (1) so [NaOH] = $3.75 \times 10^{-4} \times 1000/30 = 0.0125$ mol dm ⁻³ (1)	2	
	(iii)	$K_w = [H^+(aq)][OH^-(aq)]$ (1) $pH = -log(1 \times 10^{-14}/0.0125) = 12.10/12.1$ (1) (calc 12.09691001)	3	
	(iv)	metacresol purple (1) pH range coincides with pH change during sharp rise OR pH 6-10 /coincides with equivalence point/end point (1)	2	[8]
16.	(a)	strength of acid/extent of dissociation/ionisation (1)	1	
	(b)	(i) $H_2SO_3(aq) + CH_3COOH(aq) \rightleftharpoons HSO_3^-(aq) + CH_3COOH_2^+(aq)$ acid 1 base 2 (1) base 1 acid 2 (1) 1 mark for labels on each side of equation	2	
		(ii) CH ₃ COOH is the stronger acid/ K_a CH ₃ COOH is greater/ CH ₃ COOH is more acidic ORA (1) $C_6H_5OH(aq) + CH_3COOH(aq) \rightleftharpoons C_6H_5OH_2^+(aq) + CH_3COO^-(aq)$ (1)	2	
	(c)	For HCl, pH = $-\log[H^+]$ (1) (or with values). Could be awarded below = $-\log 0.045 = 1.35$ (1) (accept 1.3) For CH ₃ COOH, $[H^+] = \sqrt{(K_a \times [CH_3COOH])} / \sqrt{(1.70 \times 10^{-5} \times 0.045)}$ (1) $[H^+] = 8.75 \times 10^{-4} \text{ mol dm}^{-3}$ (1)		
		pH = $-\log 8.75 \times 10^{-4} = 3.058/3.06$ (1) (accept 3.1)	5	[10]

17.	HCl and CH ₃ COOH have same number of moles/ release same number of moles $H^+/$ 1 mole of each acid produce $\frac{1}{2}$ mol of H ₂ (1)		
	$[H^+]$ in CH ₃ COOH < $[H^+]$ in HCl/ CH ₃ COOH is a weaker acid than HCl (ora) (1)		
	$Mg + 2HCl \rightarrow MgCl_2 + H_2 (1)$ Mg + 2CH ₃ COOH \rightarrow (CH ₃ COO) ₂ Mg + H ₂ (1)		
	or Mg + 2H ⁺ \rightarrow Mg ²⁺ + H ₂ (1)(1)	4	[4]
18.	amount of NaOH in titration = $0.175 \ge 22.05/1000$ or $3.86 \ge 10^{-3}$ (1) (calc: $3.85875 \ge 10^{-3}$)		
	amount of A in 25.0 cm ³ = $0.5 \times \text{mol NaOH}$ or 1.93×10^{-3} (1) (calc: 1.929375×10^{-3})		
	amount of A in 250 cm ³ = $10 \times 1.93 \times 10^{-3}$ or 1.93×10^{-2} (1)		
	1.93×10^{-2} mol A has a mass of 2.82 g		
	molar mass of $\mathbf{A} = 2.82/1.93 \times 10^{-2} = 146 \text{ g mol}^{-1}$ (1) (or M_r of \mathbf{A} is 146)		
	Therefore A is adipic acid / $HOOC(CH_2)_4COOH$ (1)	5	[5]
19.	(i) proton donor (1)	1	
	(ii) partially dissociates (1)	1	[2]
20.	$C_{6}H_{5}OH(aq) + OH^{-}(aq) \rightleftharpoons C_{6}H_{5}O^{-}(aq) + H_{2}O(l)$ acid 1 base 2 (1) base 1 acid 2 (1)		

base 2 (1) base 1 acid 2 (1) 1 mark for each acid-base pair

[2]

21. (i)
$$K_a = \frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}$$
 (1)

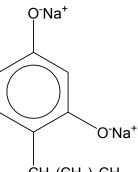
(ii) concentration =
$$38/94$$
 (1) = 0.40 mol dm⁻³ (1)
(first mark for M_r of phenol – incorrect answer here will give
ecf for remainder of question)

$$1.3 \times 10^{-10} \approx \frac{[\mathrm{H^{+}(aq)}]^2}{0.40}$$
 (1)
('=' sign is acceptable)

$$[H^+] = \sqrt{\{(1.3 \times 10^{-10}) \times (0.40)\}} = 7.2 \times 10^{-6} \text{ mol dm}^{-3} \text{ (1)}$$

pH = -log[H⁺] = -log 7.2 × 10⁻⁶ = 5.14 (1)

3 marks: $[H^+]$ (1); pH expression (1); calc of pH from $[H^+]$ (1)


Common errors:

Without square root, answer = 10.28 (1)(1)(0) Use of 38 as molar concentration does not score $1^{st} 2$ marks. This gives an answer of 4.15 for 3 marks (1)(1)(1)

[6]

5

CH₂(CH₂)₄CH₃ / NaOH /Na (1) weak acid/base pair mixture formed (1) 2 On structure, 1 mark for O Na on either or both phenol groups.

[2]

2

1

2

23. (i) completely dissociates/ionised (1) proton donor (1)
(ii) NO₃⁻ (1)

24. (i) $pH = -log[H^+] / -log(0.015)$ (1) = 1.82 / 1.8 (1) (Not 2)

Plymstock School

[3]

(ii) $[H^+] = 0.0075 \text{ mol } dm^{-3}$ pH = $-\log(0.0075) = 2.12 / 2.1$ (1)

25.	(i)	$K_{\rm w} = [{\rm H}^+({\rm aq})] [{\rm OH}^-({\rm aq})]$ (1) state symbols not needed	1	
	(ii)	$[H^{+}(aq)] = 10^{-pH} = 10^{-13.54} = 2.88/2.9 \times 10^{-14} \text{ mol dm}^{-3} (1)$ [NaOH] / [OH ⁻ (aq)] = $\frac{K_{w}}{[H^{+}(aq)]} = \frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}$ = 0.347 / 0.35 mol dm ⁻³ (1)	2	[3]
26.	(i)	a solution that minimises/resists/opposes pH changes (1)	1	
	(ii)	The buffer must contain both CH_3COOH and CH_3COONa / CH_3COO^- /weak acid and conjugate base(*) (1)		
		Solution A is a mixture of CH ₃ COOH(*) and CH ₃ COONa(*) / / has an excess of acid /is acidic (1)		
		Solution B , contains only $CH_3COONa/$ only $CH_3COO^-/only$ the salt/ is neutral (1)		
		$CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l) / acid/alkali has been neutralised/CH_3COOH(aq) and NaOH react together (1)$	4	[5]
				[5]
27.		increases (1) ionises more /		

for $H_2O \rightleftharpoons H^+ + OH^-$, equilibrium moves to the right (1) exo/endo is 'noise'

[2]

2

1

[3]